Menu

Home / News & Events

ระบบควบคุมพีไอดี (PID) คืออะไร? By Admin, 16  Mar  2020


          PID controller  หัวใจของระบบควบคุมทางอุตสาหกรรม   ซึ่งเป็นอะไรที่จำเป็นอย่างยิ่งสำหรับช่างเทคนิคและวิศวกร หรือเปรียบเสมือนอาวุธประจำกายชนิดหนึ่งของวิศวกรหรือช่างเทคนิคที่ทำงานเกี่ยวข้องกับระบบควบคุมอุตสาหกรรม  ดังนั้นหากใครลืม  (หรือคืนอาจารย์ไปหมดแล้ว) ก็ทบทวนหรือรีเฟรชกันใหม่ได้  หรือหากถ้ายังไม่เคยรู้จักหรือเข้าใจมาก่อนก็ติดตามได้ดังต่อไปนี้
 

 

PID controller

 

 

        ระบบควบคุมแบบสัดส่วน-ปริพันธ์-อนุพันธ์ (อังกฤษ: PID controller) เป็นระบบควบคุมแบบป้อนกลับที่ใช้กันอย่างกว้างขวาง ซึ่งค่าที่นำไปใช้ในการคำนวณเป็นค่าความผิดพลาดที่หามาจากความแตกต่างของตัว แปรในกระบวนการและค่าที่ต้องการ ตัวควบคุมจะพยายามลดค่าผิดพลาดให้เหลือน้อยที่สุดด้วยการปรับค่าสัญญาณขา เข้าของกระบวนการ ค่าตัวแปรของ PID ที่ใช้จะปรับเปลี่ยนตามธรรมชาติของระบบ

 

 


แผนภาพบล็อกของการควบคุมแบบพีไอดี

 

 

 

วิธีคำนวณของ PID ขึ้นอยู่กับสามตัวแปรคือค่าสัดส่วน, ปริพันธ์ และ อนุพันธ์ ค่าสัดส่วนกำหนดจากผลของความผิดพลาดในปัจจุบัน, ค่าปริพันธ์กำหนดจากผลบนพื้นฐานของผลรวมความผิดพลาดที่ซึ่งพึ่งผ่านพ้นไป, และค่าอนุพันธ์กำหนดจากผลบนพื้นฐานของอัตราการเปลี่ยนแปลงของค่าความผิดพลาด น้ำหนักที่เกิดจากการรวมกันของทั้งสามนี้จะใช้ในการปรับกระบวนการ

โดยการปรับค่าคงที่ใน PID ตัวควบคุมสามารถปรับรูปแบบการควบคุมให้เหมาะกับที่กระบวนการต้องการได้ การตอบสนองของตัวควบคุมจะอยู่ในรูปของการไหวตัวของตัวควบคุมจนถึงค่าความผิด พลาด ค่าโอเวอร์ชูต (overshoots) และ ค่าแกว่งของระบบ (oscillation) วิธี PID ไม่รับประกันได้ว่าจะเป็นระบบควบคุมที่เหมาะสมที่สุดหรือสามารถทำให้กระบวน การมีความเสถียรแน่นอน

การประยุกต์ใช้งานบางครั้งอาจใช้เพียงหนึ่งถึงสองรูปแบบ ขึ้นอยู่กับกระบวนการเป็นสำคัญ พีไอดีบางครั้งจะถูกเรียกว่าการควบคุมแบบ PI, PD, P หรือ I ขึ้นอยู่กับว่าใช้รูปแบบใดบ้าง

 

 

การควบคุมแบบ PID ได้ชื่อตามการรวมกันของเทอมของตัวแปรทั้งสามตามสมการ:
     

             MV(t)    =  Pout  + Iout  + Dout

เมื่อ

Pout  , Iout  และ  Dout เป็นผลของสัญญาณขาออกจากระบบควบคุม PID จากแต่ละเทอมซึ่งนิยามตามรายละเอียดด้านล่าง

 

 

สัดส่วน


กราฟ PV ต่อเวลา, Kp กำหนดเป็น 3 ค่า(Ki และ Kd คงที่)
เทอมของสัดส่วน (บางครั้งเรียก อัตราขยาย) จะเปลี่ยนแปลงเป็นสัดส่วนของค่าความผิดพลาด การตอบสนองของสัดส่วนสามารถทำได้โดยการคูณค่าความผิดพลาดด้วยค่าคงที่  Kp, หรือที่เรียกว่าอัตราขยายสัดส่วน

เทอมของสัดส่วนจะเป็นไปตามสมการ:

P_{\mathrm{out}}=K_p\,{e (t)}

 

เมื่อ

Pout : สัญญาณขาออกของเทอมสัดส่วน
Kpอัตราขยายสัดส่วน, ตัวแปรปรับค่าได้
: ความผิดพลาด  = SP - PV  .
t :  เวลา

      ผลอัตราขยายสัดส่วนที่สูงค่าความ ผิดพลาดก็จะเปลี่ยนแปลงมากเช่นกัน แต่ถ้าสูงเกินไประบบจะไม่เสถียรได้ ในทางตรงกันข้าม ผลอัตราขยายสัดส่วนที่ต่ำ ระบบควบคุมจะมีผลตอบสนองต่อกระบวนการน้อยตามไปด้วย

 

ปริพันธ์ 


กราฟ PV ต่อเวลา, Ki กำหนดเป็นสามค่า (Kp และ Kd คงที่)
 

      ผลจากเทอมปริพันธ์ (บางครั้งเรียก reset) เป็นสัดส่วนของขนาดความผิดพลาดและระยะเวลาของความผิดพลาด ผลรวมของความผิดพลาดในทุกช่วงเวลา (ปริพันธ์ของความผิดพลาด) จะให้ออฟเซตสะสมที่ควรจะเป็นในก่อนหน้า ความผิดพลาดสะสมจะถูกคูณโดยอัตราขยายปริพันธ์ ขนาดของผลของเทอมปริพันธ์จะกำหนดโดยอัตราขยายปริพันธ์,Ki  

เทอมปริพันธ์จะเป็นไปตามสมการ:
 

I_{\mathrm{out}}=K_{i}\int_{0}^{t}{e (\tau)}\,{d\tau}

เมื่อ

Iout: สัญญาณขาออกของเทอมปริพันธ์
Ki  : อัตราขยายปริพันธ์, ตัวแปรปรับค่าได้
: ความผิดพลาด  = SP - PV  .
t :  เวลา
\tau: ตัวแปรปริพันธ์หุ่น

 

   เทอมปริพันธ์ (เมื่อรวมกับเทอมสัดส่วน) จะเร่งกระบวนการให้เข้าสู่จุดที่ต้องการและขจัดความผิดพลาดที่เหลืออยู่ที่ เกิดจากการใช้เพียงเทอมสัดส่วน แต่อย่างไรก็ตาม เทอมปริพันธ์เป็นการตอบสนองต่อความผิดพลาดสะสมในอดีต จึงสามารถทำให้เกิดโอเวอร์ชูตได้ (ข้ามจุดที่ต้องการและเกิดการหันเหไปทางทิศทางอื่น)

 

 

 

อนุพันธ์

กราฟ PV ต่อเวลา, สำหรับ Kd 3 ค่า (Kp และ Ki คงที่)

อัตราการเปลี่ยนแปลงของความผิดพลาดจากกระบวนการนั้นคำนวณหาจากความชันของ ความผิดพลาดทุกๆเวลา (นั่นคือ เป็นอนุพันธ์อันดับหนึ่งสัมพันธ์กับเวลา) และคูณด้วยอัตราขยายอนุพันธ์ Kd ขนาดของผลของเทอมอนุพันธ์ (บางครั้งเรียก อัตรา) ขึ้นกับ อัตราขยายอนุพันธ์ Kd

เทอมอนุพันธ์เป็นไปตามสมการ:

D_{\mathrm{out}}=K_d\frac{d}{dt}e (t)

เมื่อ

Dout :  สัญญาณขาออกของเทอมอนุพันธ์
Kd :อัตราขยายอนุพันธ์, ตัวแปรปรับค่าได้
: ความผิดพลาด  = SP - PV  .
t :  เวลา

      เทอมอนุพันธ์จะชะลออัตราการเปลี่ยนแปลงของสัญญาณขาออกของระบบควบคุมและ ด้วยผลนี้จะช่วยให้ระบบควบคุมเข้าสู่จุดที่ต้องการ ดังนั้นเทอมอนุพันธ์จะใช้ในการลดขนาดของโอเวอร์ชูตที่เกิดจาเทอมปริพันธ์และ ทำให้เสถียรภาพของการรวมกันของระบบควบคุมดีขึ้น แต่อย่างไรก็ตามอนุพันธ์ของสัญญาณรบกวนที่ถูกขยายในระบบควบคุมจะไวมากต่อการ รบกวนในเทอมของความผิดพลาดและสามารถทำให้กระบวนการไม่เสถียรได้ถ้าสัญญาณ รบกวนและอัตราขยายอนุพันธ์มีขนาดใหญ่เพียงพอ

 

 

 

ผลรวม

เทอมสัดส่วน, ปริพันธ์, และอนุพันธ์ จะนำมารวมกันเป็นสัญญาณขาออกของการควบคุมแบบ PID กำหนดให้  u(t) เป็นสัญญาณขาออก สมการสุดท้ายของวิธี PID คือ:

\mathrm{u (t)}=\mathrm{MV (t)}=K_p{e (t)} + K_{i}\int_{0}^{t}{e (\tau)}\,{d\tau} + K_{d}\frac{d}{dt}e (t)

 

 

รหัสเทียม

รหัสเทียม (อังกฤษpseudocode) ของ ขั้นตอนวิธีระบบควบคุมพีไอดี โดยอยู่บนสมมุติฐานว่าตัวประมวลผลประมวลผลแบบขนานอย่งสมบรูณ์แบบ เป็นดังต่อไปนี้

 

previous_error = setpoint - actual_position
integral = 0
start:
  error = setpoint - actual_position
  integral = integral + (error*dt)
  derivative = (error - previous_error)/dt
  output = (Kp*error) + (Ki*integral) + (Kd*derivative)
  previous_error = error
  wait(dt)
  goto start

 

 
 

การปรับจูน

การปรับจูนด้วยมือ

      ถ้าระบบยังคงทำงาน ขั้นแรกให้ตั้งค่า Ki และ Kd เป็นศูนย์ เพิ่มค่า Kp จนกระทั่งสัญญาณขาออกเกิดการแกว่ง (oscillate) แล้วตั้งค่า Kp ให้เหลือครึ่งหนึ่งของค่าที่ทำให้เกิดการแกว่งสำหรับการตอบสนองชนิด "quarter amplitude decay" แล้วเพิ่ม Ki จนกระทั่งออฟเซตถูกต้องในเวลาที่พอเพียงของกระบวนการ แต่ถ้า Ki มากไปจะทำให้ไม่เสถียร สุดท้ายถ้าต้องการ ให้เพิ่มค่า Kd จนกระทั่งลูปอยู่ในระดับที่ยอมรับได้ แต่ถ้า Kd มากเกินไปจะเป็นเหตุให้การตอบสนองและโอเวอร์ชูตเกินยอมรับได้ ปกติการปรับจูน PID ถ้าเกิดโอเวอร์ชูตเล็กน้อยจะช่วยให้เข้าสู่จุดที่ต้องการเร็วขึ้น แต่ในบางระบบไม่สามารถยอมให้เกิดโอเวอร์ชูตได้ และถ้าค่า Kp น้อยเกินไปก็จะทำให้เกิดการแกว่ง

 

ผลของการเพิ่มค่าตัวแปรอย่างอิสระ
ตัวแปรช่วงเวลาขึ้น
(Rise time)
โอเวอร์ชูต
(Overshoot)
เวลาสู่สมดุล
(Settling time)
ความผิดพลาดสถานะคงตัว
(Steady-state error)
เสถียรภาพ
Kpลดเพิ่มเปลี่ยนแปลงเล็กน้อยลดลด
Kiลดเพิ่มเพิ่มลดลงอย่างมีนัยสำคัญลด
Kdลดลงเล็กน้อยลดลงเล็กน้อยลดลงเล็กน้อยตามทฤษฏีไม่มีผลดีขึ้นถ้า Kd มีค่าน้อย

 

 

วิธีการ Ziegler–Nichols

วิธีการนี้นำเสนอโดย John G. Ziegler และ Nathaniel B. Nichols ในคริสต์ทศวรรษที่ 1940 ขั้นแรกให้ตั้งค่า Ki และ Kd เป็นศูนย์ เพิ่มอัตราขยาย P สูงที่สุด, Ku , จนกระทั่งเริ่มเกิดการแกว่ง นำค่า Ku และค่าช่วงการแกว่ง Pu   มาหาค่าตัวแปรที่เหลือดังตาราง:
 

Control TypeKpKiKd
P0.50Ku--
PI0.45Ku1.2 Kp/Pu-
PID0.60Ku2 Kp/Pu.

KpPu/8  

ที่มา : http://th.wikipedia.org

อ้างอิง ขอขอบคุณสำหรับข้อมูลจาก : http://www.9engineer.com/index.php?m=article&a=show&article_id=2311

ช่องทางการติดต่อ
fb : @GreatOrientalTrading
line@ : @gotrading
Mobile : 097-3619703
Tel : 074-300212-4



Our Customer